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SOME LOCALLY OPTIMAL SUBSET SELECTION RULES
FOR COMPARISON WITH A CONTROL *
by
Deng-Yuan Huang, National Taiwan Normal University
S. Panchapakesan, Southern Illinois University
Sheng-Tsaing Tseng, Nationalaggiwan Institute of Technology
1. INTRODUCTION:

Let TgrTysee o™y be k + 1 independent populations where LF has the
associated distribution function F(x,ei) and density f(x,6;) with the un-
known parameter 8; belonging to an interval @ of thé real line.R. We are
generally interested in fwo types of goals. Goal I is to select a sub-
set (preferably small in size) of the k populations TysenesMy that will
contain the best (suitably defined) among them and Goal II is to select
from m,...,m (k experimental treatments) those populations, if any,
that are better (to be defined) than 0 which is the control or standard
population. |

In the recent years, several authors have investigated construction
of optimal subset selection rules and also established qptima]ity pfopf
erties of known selectioﬁ rules for specific cases. Sdme of the impor-
tant papers in these directions are Berger and Gupta [1], Bickel and
Yahav [2], Bjg#rnstad [3], Chernoff and Yahav [4], Goel and Rubin [5],
Gupta and Hsfao [6], Gupta and Hsu [7], Gupta and Huang [8,9], Gupta
and Kim [12,13], Gupta and Miescke [14], and Miescke [17]. These in-

vestigations generally deal with the symmetric case of equal sample

*The research of the first two authors was supported by the Office of
Naval Research Contract NO0OO14-75-C-0455 at Purdue University. Repro-
duction in whole or in part s permitted for any purpose of the United
States Government.
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sizes. There have been some investigations in the unequal sample sizes
case but these sre concerned with ad hoc and heuristic procedures and

are not generally successful in establishing the least favorable configu-
ation (LFC) for the probability of a correct decision. For many classical
procedures in the literature for selecting a subset containing the best,
the LFC turns out to be 0y = «e0 = 8. This provides the motivation for
seeking rules which are optimal in some suitable sense in a neighborhood
of every equiparameter point. When we are comparing these populations
with T the local optimality is related to the ability to reject the
populations that are inferior to ™ and select those that are superior

in a suitable neighborhood of selected parametric configurations.

Though some early investigation of locally optimal subset selection
rules based on ranks appeared in Nagel [18], such rules were not investi-
gated further until recently. Some locally optimal subset selection
rules based on ranks were derived by Gupta, Huang and Nagel [11] and
Huang and Panchapakesan [16]. The first of these papers considered Goal
I whereas the latter considered both Goals I and II. Though these rules
were based on ranks it was assumed that the functional form of the den-
sity is known; the justification for seeking rules based on ranks comes
from the usual robustness considerations in that the ranks are insensi-
tive to outliers and there could be possible deviations from the model.
Gupta, Huang and Nagel [11] maximized the probability of a correct selec-
tion in the neighborhood of any equiparameter point whereas Huang and
Panchapakesan [16] used for Goal I the criterion of strong monotonicity
in the same type of neighborhood and for Goal II a local optimality con-
dition which reflects the sensitivity of the rule when all but one popu-
lation are not distinctly superior and the remaining one is close to

others but distinctly superior.
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The present paper derives a locally optimal subset seléction rule
for Goal II based on parametric inference type statistics with no assump-

tion  of equal sample sizes. In Section 2, we state a local optimality

condition and prove the main theorem giving the constfuction of a locally
optimal rule. Section 3 deals with the applications of the general re-
sult to the following special cases: (a) normal means comparison - common
known variance, (b) normal means comparison - common unknown variance,

(c) gamma scale parameters comparison - known (unequal) shape parameters
and (d) regression slopes. In all these cases, the locally optimal rule
is obtained based on samples of unequal sizes.

Finally, for detailed discussions on optimality and other aspects of

"multiple decision problems and general decision theoretic approach, the

reader is referred to Gupta and Huang [10] and Gubta and Panchapakesan

[1s].

2. DERIVATION OF THE RULE
Let {xij}’ j=1,...,n1, denote the random sample from Tis i=0,1,...,k.
Our goal is to construct a rule to select all populations that are better
than the control. The selection rule will depend upon the observations
through the statistics Tyq, 1=1,....k, where'Tij is suitaply defined to

indicate the difference between Ty and T For fixed "0’"i""’"k‘ we

assume that Tij has a density function 9. (tij) depending on the param-
ij

eter TR The parameter T is a measure of the 'separation' of LF from

"y Also, T is the same for all i and this common value is denoted by

Dm{ l

t*. For example, in the location case, we can take 44 =0, - ej giving

t* = 0, On the other hand, if ¢ is a scale parameter, we can take

111 = Oi/OJ SO0 that T* = ]-

Avilﬂl_.&_aj;»u;y‘ deos
vail and/or
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Now, we define population y to be superior to the control if

Ti0 > t* and inferior otherwise. Let

Q = A{lll’(flo’--ogfko). Tioe R, i-].--.’k} »
90 = {I_IT]O-.-..TRO-T.} 'l

Q.i = {1‘110>T*=TJoD jfi} .

_Define § = (6],...,6k), where 61(1_<_‘i§_k) is a test function for Hy: 1€Q

vS. Hi: 1€q; .

2.1. Optimality Requirement. Let 0 <y, <1 (1<i<k) be specified.

Define
(2.1) S = {gIEl*(Gi)"yi. T<i<k} .

We wish to derive a rule 5§€ S which

‘ k
(2.2) maximizes 2 ¢ (s,)
| =1 2740 T 1 |gape

amongAaH the rules in S. We note that §€ S means that the error prob-
abilities are con‘i:rolled and that the condition (2.2) amounts to maximiz-
ing the efficiency in a certain sense of the rule in picking out the
superior population in the direction of each component at t* = (t%,...,t*).
Let ht(j_:_) denote the joint density of T = (Tw,...,Tko) with respect
to a o-fin;te measure u. Let h_,(t) denote the density h_(t) when 1 = 1*
and hg)(_t_) denote the partial ;eﬂvative 3-%-6 h (t) evﬂ;ated at t = t*

Finally, we need to assume certain regularity conditions, namely, that
h_(t) 1s continuously differentiable with respect to each component of
* and 3;*113- h_(t) is integrable. Under these regularity conditions, it

is eesy to see that




where 7 is the sample space of T = (TIO""’Tko)‘

Summarizing the above discussion, we are seeking a rule § (t)
such that
(2.3) ;ci(g)hl*(g)du(g) = yie 190,000k

ISR 2 AT i 1 PR S ogd i S -

and it maximizes, among all rules satisfying (2.3), the expression

(2.4) 'f f s, (0 (pdult) .
. i 7 AL AL AT

2.2. A Locally Optimal Rule. We now state and prove the main

theorem of this section. 5

Theorem 2.1. Under all the assumptions stated previously, a rule
gp(g) which satisfies (2.3) and maximizes (2.4) among all rules satisfy-

ing (2.3) is given by

1 >
(2.5) c?(g = {1 if hS)(L) = cihalt) l
0 <
where A and_ci such that
(2.6) J s W(B)du(t) = vps T=T0eiisk
T = 4

Proof. The proof is straightforward by noting that for any &

satisfying (2.3) we have

k
(2.7) I L@@ @00 w-ch ey 2 o.
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3. SPECIAL CASES

In this section, we apply the result of Section 2 to several special

cases.

Case A: Normal Means Comparison; Common Known Variance. Here =,

is N(ei.og), where 0(2) is known. Let )Ii be the sample mean based on ny

independent observations from Ty i=0,1,...,k. Take TiO = "-‘i”.‘o)/"o
and tio = (84-85)/0y. Of course, t* = 0. Then the joint density
h (L) of T = (Tygs...5Tg) is a multivariate normal distribution with

mean vector t = (tw,...,rko) and covariance matrix A = (A”) given by

1
o

(1+1) fori=j
. i
(3.1) Ny ®

]
— for i # ]
o

where a; = "i/"O’ i=1,...,k. Thus
(3.2) () = (2025 el g (10 a7 (E-D).
It is e&sy to verify that h,l(,p(;_)/hr,,(_t_:_)

= (a7,

a.
= ‘ -
Nl T*_FZ M, (1+ z;z‘i a,) j,{” ajtj} .

where (1\"]3_)1 denotes the ith coordinate of the vector (A']_g) and in sum-

mations involving the a, such as Z a,, the subscript ranges from 1 to
L1
0

k subject to any exceptions stated. The Tocally optimal rule & 1is now

given by




1 if ot - Y oa.t. > c*
i + a, . R IR |
(3.3) 6d(t) = DAL

0 otherwise

where c? is determined by

- ] *) =
(.3.4) P'_r_*(T‘i fﬁ—l;:—a; jz-l ajTjg_ci) Y5 -

Now, using the fact that, when t = 1*(=0), (A-]l)i is normally distribut-
ed with mean zero and variance "Oai(]+ g. az)/(1+2a£), it is easy to
i :

see that

(3.5) c*

$ = 67 (1-y,) /T8 nga; (TF

)
#

a )
Wfi ¥

o1 (1-y,) /NTRITW- RCE

where N = Ny + n + ...+ N and ¢ denotes the standard normal distribu-

tion function.

Remark 3.1. The individual selection probability 6?(5) in (3.3)

can also be expressed as

1
> C
J

M I

(Y 1
85(8) = j

0 otherwise
In this form, it can be recognized as a weighted average type rule.

When the sample sizes are equal, it is the usual average type rule and

selects n; if and only if t, - %- 351 ty > ct.

Case B: Normal Means Comparison; Common Unknown Variance. Unless

stated otherwise, the notations of Case A will apply here. Llet Sf denote

the sample variance (divisor ny - 1) based on the sample from LIT Then




K
2= 3

P =
unknown variance o2 on v = N - k - 1 degrees of freedom. Define

Yi = (xi-XO) and Tio = Yi/sp’ i‘l’.oo’ku Theﬂ I = (Tlogoccgrko) has a

k
(ni-l)sfl ) (ng=1) is the usual pooled estimator of the common
0 i=0

multivariate normal t distribution and its density ht(g) can be written

in an integral form as follows:

- - L .A-l W)Y vtk -
(3.6) ht(gqo-ge“/:-l) ot 2wl

where 1 '= (TIO""’TkO)’ Ti0 * (ei-eo)/o. i=1,...,k, A, is the appropri-
ate constant, and A = (A,ij) is the same as in Case A given by (3.1).

Now, letting €k = /Zr(ﬂgﬂ-)/r(%&) , it is easy to verify that

| n{ B W) = ¢, o e
E = cv’k(A'11)i// vsp2+y_'A'|1
3 ;
i - — n y
}1 ni(N_ni) i N ni j} j j
=Gk N -
- , vsp+1'A Yy
] : ) - . "i(N'"i) ’ 2 _
) = cv’k '—_'N—' L (X’sp)’ say ,
: where y = (y],..'.,yk).
Thus, the locally optimal rule 9_0 is given by 11
1 if  w(y,s,) > c*
(3.7) a?(.z.s:) -’ pr=n
| 0 otherwise g
where c¥ is determined by : ] L

(3.8) PSR ep) =y

Since Yi - N:]'vﬁ ,1;1 anj has a normal distribution with mean zero and




variance azN/ni(N-ni) and (vS§+!jA']!)/02 has a chi-square distribution
2 N
with N - 1 degrees of freedom, it follows that w(!,sp)/ /'E;TNTF;T' has

a t-distribution with N - 1 degrees of freedom. So we see from (3.8)

- that

= / N
(3-9) c; = tYi’N'] ni ‘n,'-

where tY N-1 denotes the upper 100v, percent point of the t-distribution
i’ :

with N - 1 degrees of freedom.

Case C: Gamma Scale Parameters Comparison: Unequal;ixnown)‘Shqgg

Parameters. Let m (i=0,...,k) be a gamma population with4density

V‘-"]

(3.10) f(x364,v;) = —F—— exp{-x/6;}, x > 0, 8, > 0,
r(vg)e,’
v
where the shape parameters vy are known. We take Ti0 © 61/90 so that
=1, Let xij’ j=1,...,ni, be independent observations from LF and
define T, = inXO’ i=1,...,k. The joint density of T,5,...,T, 4 is

easily derived to be

| kg % t
(3.1) ho(e) = (W) izo;<“o‘io) “T(ngv)
k n,v,;-1
: tiii
. i=1
kK n,t N
R
[ i=1 "o"io]
k

where M = ] n.v; . From this we get
i=0

D ettt S vt T PRI



“’(t) Mn

12) ) it
(3. T (_ET 1 - ni\’.‘
T ng* JZ] njtj

Mn_ X :
: = i - N.v ;

Thus the locally optimal rule g? is given by

k
1 ot Y *
(3.13) 6i(x0""’xk) =
0 otherwise
where the constant c? is determined by
"ixi
* =
(3.14) Pl* T x2¢ Yy -
1 n
j=0

When 1 = 1*, anj has a gamma distribution with parameters o and nivy-

However, the probability in (3.14) is independent of s. It-is known

that n,R./ Z ny X has a beta distribution with parameters n,v, and
( J=0
- M - n,v., denoted by B(n1v1,M—n ve). Thus c¥ is the upper 100y percent- i

: age point of B(n vy sM- -n;v i) and can be obtained from tables of incomplete %

beta function. i

Remark 3.2. It should be first pointed out that the above prob-
lem includes as a special case the problem of comapring normal vari-
ances based on samples of unequal sizes. It also includes the problem
of comparing scale parameters o4 of Weibull populations which has a com-

mon known shape parameter g, If xij’ J=l,...,n1. are the sample obser-

vations from i then we can transform these by YU j into sample
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observations from an exponential distribution with mean Ai = e?. Thus

it is a special case of the gamma problem.

Case D: Comparison of Regression Slopes. Let LF denote a simple

linear regression model

(3.15) Y = a; ¥ BiX + e

where € ~ N(O,az) and 02 is unknown. Let {xij’Yij}’ j=1,...,ni, denote

the sample data from (3.15). Define Ti0 = (Bi'BO)/°’ i=1,...,k. The

least squares estiamtors of o and 8, are given by &i

2

’ v, - B;x; and
8 = 2 X. = =

i
z(xi.-i.)z, and

i i ; i i
SxiY = z(xij'xi)(yij’?i)’ A1l the summations are over j going from 1 to n
The usual pooled unbiased estimator of 02 is Sg =

k ni - a 2 k : 2 2
iZO jzl (yij'“i'sixij) / iz (n;-2). I: is well-known that Q = vSp/o
has a chi-square distribution with v = } (ni-2) degrees of freedom.

i=0

Define Zi = B; - Bp and T1.0 = Zi/sp’ i=1,...,k. Then the joint density

hr(g) of T = (TIO""’TkO) is the same as the expression in (3.6) but
with 1,4 = (si-so)/o and A = (Aij) given by

1 ] _
gz— (1+ ;;) » =7
X
_ 0
(3.16) A =
g{,— , i
%o

where ay ='S§ /Si » i=1,...,k. It is now easy to see that the locally
i 70

optimal rule gP is given by

i.




2
1 if (23S
(3.17) Nz - i %0

0 otherwise

where z = (z',...,zk) and

2
seeesSy ) > ¥
Xy i

(3.18) w(g;si seeesS
0 X /2T,
vsp+§'l\ Z

The constant c; is determined by
(3.19) P (w(Z;s2 2 )>c) = y
. I-* _, xo’...’ xk - i 1'

and by appealing to the result of Case B, we get

(3.20) F = by Nke2 3-/‘*
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